Pharmacognosy – I

(Unit - 3)

(Classification Of Drugs)

By: Md. Shakeel Alam

(Assistant Professor)

S.N.S. COLLEGE OF PHARMACY, MOTIHARI

CLASSIFICATION

Vegetable drugs can be arranged for study under the following headings:

- > Alphabetical
- Morphological
- > Taxonomical / Biological
- ➤ Pharmacological / Therapeutic
- > Chemical

1. Alphabetical

- > Either Latin or vernacular names may be used.
- This arrangement is employed for dictionaries, pharmacopoeias, etc.
- Although suitable for quick reference it gives noindication of inter-relationships between drugs.

In this classification drugs are classified in alphabetical order using either their Greek name or Latin name. Though pharmacopoeias, formulary, encyclopedias of various countries follow this classification, but due to lack of scientific value now-a-days this classification is not preferred.

Example: Acacia, Bael, Cinchona, Dill, Ergot, Fennel, Ginger, Henbane, Ipecac, Jalap, Kurchi, Licorice, Myrrh, Nux-Vomica, Opium, Podophyllum, Quassia, Rauwolfia, Senna, Tea, Urgenia, Vasaka, Wool Fat, Yam, Zedoary etc.

❖ Major Advantage of this method is that it provides quick reference.

2. Morphological

Drugs are arranged according to their morphological or external characters of the plantparts or animal parts, i.e. which part of the plant is used as drug.

This is most simple classification method where crude drugs are grouped into two major classes: organized (having specific parts of plant like root, rhizome, flower, leaf, fruit, bark, seed, wood etc.,) and unorganized drugs (dried lattice, juice, gum, wax, oil etc.). But many crude drugs are very similar morphologically and hence difficult to distinguish. Many times, crude drug available in powder form that time morphological classification is not so suitable and acceptable.

Organized drugs:

obtained from the direct parts of the plants and containing cellular tissues.

leaves (digitalis, Senna, belladonna), e.g. flowers (clove, saffron), fruits (amla, cardamom, cumin), seeds (ispaghula, linseed, Phyto stigma), herbs (ergot, vinca), barks (cinchona),

rhizomes and roots (aconite, ginseng, ipecac, rauwolfia),

hair &fibers (flax)

Unorganized drugs:

prepared from plants by some intermediate physical processes such as incision, drying or extraction with a solvent and not containing any cellular plant tissues.

e.g. latex (opium),

dried juice (aloe),

extracts (agar, catechu, pectin),

waxes (beeswax),

gums (acacia, guar gum),

resins (benzoin, colophony, tolu balsam),

volatile oil (turpentine, cinnamon, peppermint, clove),

fixed oils & fat (arachis, castor, olive, cod liver),

➤ Advantage:

More convenient for practical study especially when the chemical nature of the drug is not clearly understood.

Disadvantage:

there is no correlation of chemical constituents with the therapeutic actions.

Organised crude drugs		Un-organised crude drugs	
Obtained from parts of plants		Obtained from parts of plants& Animal	
Well defined structure		Not well-defined structures	
Solid in nature		Semisolid, solid, liquid in nature	
Microscopic studies are useful in quality control		Chemical tests are more useful in quality	
		control	
<u>Examples</u>		<u>Examples</u>	
Parts	Example	Class	Example
Leaves	Senna, digitalis, vasaka,	Resins	Balsam of tolu, myrrh,
	eucalyptus		asafoetida, benzoin
Barks	Cinchona, kurchi,	Gums and mucilages	Acacia, tragacanth,
	cinnamom, quaillia		guar gum
Woods	Quassia, sandalwood	Dried latices	Opium
Roots	Rauwolfia, ipecacuanha,	Dried juices	Aloes, kino
	aconite		
Rhizomes	Turmeric, ginger, valerian,	Volatile oils	Cinnamon oil
	podophyllum		
Seeds	Nux-vomica, strophanthus	Fixed Oil	Castor oil and lard
Fruits	Coriander, colocynth,	Extracts	Catechu
	fennel, bael		
Entire plant	Vinca, belladonna	Saccharine	Honey
		substances	

3. Taxonomic / Biological

Drugs are arranged according to the plants from which they are obtained, in kingdom, subkingdom, division, class, order, family, genus and species.

In this classification crude drugs are arranged according to taxonomic order i.e., phylum, division, class, sub-class, orders, families, genus and species. Precise and orderly arrangement of drugs has no ambiguity in this classification. But again, this type of classification lacks scientific value and unorganized crude drugs are difficult to classify.

> Advantage:

It allows for a precise and ordered arrangement and accommodates any drug without ambiguity; helpful for studying evolutionary developments.

Disadvantage:

does not correlate in between thechemical constituents and biological activity of thedrugs.

Example:

- Phylum Spermatophyta
- Division Angiospermae
- Class Dicotyledons
- Sub-class Sympetalae
- Order Tubiflorae
- Family Solanaceae
- Genus Atropa
- Species belladonna

Class

— Angiospermae (Angiosperms): plants that produceflowers

Examples: Rose, Sunflower, Mustard Oil etc.

— Gymnospermae (Gymnosperms): Plants which do notproduce flowers

Examples: Pinus, Gnetum, Cycads etc.

Subclass

- Dicotyledonae (Dicotyledons, Dicots): plants with twoseed leaves

Examples: Peanut, Marigold, Sunflower etc.

Monotyledonae (Monotyledons, Monocots): plantswith one seed leaf

Examples: Palm tree, Grasses, Bananas, Orchids etc.

Suborder

A group of related plant families, classified in the order in which they are thought to have developed their differencesfrom a common ancestorEach superorder is further divided into severalorders: the names of the orders end in -ales

***** Family

- Each order is divided into families
- These are plants with many botanical features incommon, and are the highest classification normally used.
- The names of the families end in —aceae

Examples: Apocynaceae

Lamiaceae

Liliaceae

Solanaceae

Papaveraceae

Roseaaceae

Subfamily

The family may be further divided into a number of subfamilies, which group together plants within the family that have some significant botanical differences.

Subfamilies end in -oideae

Genus

Part of the plant name that ismostfamiliar; the normal name that you give a plant

- Papaver (Poppy)
- Arachis (Peanut)

Species

- Level that defines an individual's plant.
- The name describes some aspects of the plant.
- The color of the flowers, size and shape of the leaves, and it may be named after the place where it was found.
- Should be written after genus name, in small latter.

4. Pharmacological/ Therapeutic

Drugs acting on G.I.T.

- Carminative Fennel, Cardamom, Mentha
- Emetic Ipecac
- Antiamoebic Kurchi, Ipecac
- Laxative Agar, Isabgol, Banana
- Purgative Senna, Castor oil

Cathartic - Senna

Drugs acting on Respiratory System

- Antitussive Opium (codeine)
- Bronchodilators Ephedra, Tea
- Expectorant Vasaka, Liquorice, Ipecac

Drugs acting on Autonomic Nervous System

- Adrenergic- Ephedra
- Cholinergic Physostigma, Pilocarpus
- Anticholinergic- Datura, Belladonna

Drugs acting on Cardiovascular System

- Cardiotonic Digitalis, Strophantus, Squill
- Cardiac depressant Cinchona, Veratrum
- Vasoconstrictor Ergot
- Antihypertensive Rauwolfia

Drugs acting on Central Nervous System

- Central analgesic Opium (morphine)
- CNS depressant- Belladonna, Opium, Hyoscyamus
- CNS stimulant Tea, Coffee
- Analeptic Nux vomica, Camphor, Lobelia

Miscellaneous

- Antispasmodic- Datura, Hyoscyamus, Opium, Curare
- > Anticancer Vinca, Podophyllum, Taxus
- Antirrheumatic Aconite, Colchicum, Guggal
- > Anthelminthic-Quassia, Vidang
- Astringent- Catechu, Myrobalans
- > Antimalarial Cinchona, Artemesia
- ➤ Immunomodulatory- Ginseng, Ashwagandha, Tulsi
- > Immunizing agent- Vaccines, Sera, Antitoxin
- > Drugs acting Skin Membrane Beeswax, Wool fat, Balsamof Tolu, Balsam of Peru
- ➤ Local anesthetic Coca

5. Chemical

- Crude drugs are classified depending upon theactive constituents
- Irrespective of the morphological or taxonomicalcharacters, the drugs with similar chemicalconstituents are grouped together

This classification is purely based on chemistry of constituents. Different crude drugs are classified according to the presence of major active constituents. This is most preferred method of classification.

Advantage:

it is a popular approach forphytochemical studies

Disadvantage:

ambiguities arise when particulardrugs possess a number of compounds belongingto different groups of compounds.

Chemical Constituent Group

- Alkaloids- Cinchona, Datura, Vinca, Ipecac, Nux vomica
- Glycosides Senna, Aloe, ginseng, Digitalis
- Carbohydrates & its derivatives Acacia, Starch, Isabgol
- Volatile oil Clove, Coriander, Fennel, Cinnamon, Cumin
- Resin and Resin Combination Benzoin, Tolu Balsam, Balsam of Peru
- Tannins- Catechu, Tea
- Enzymes- Papain, Casein, Trypsin
- Lipids Beeswax, Kokum butter, Lanolin

Parameters involved in pharmacognostic study of crude drug

<u>Parameters</u>	<u>Description</u>	
Chemical constituents	major and minor chemical constituents present	
Chemical tests	To Identify crude drug and its chemistry	
Uses and pharmacological	actions Various therapeutic applications	
Adulterants and Commercial varieties	Useful for quality control	
Formulations available in Market	To understand market potential	
Quality control and standardization	To establish qualitative and quantitative	
	standards with the help of sophisticated	
	instruments.	
Common names	Names in various languages	
Biological source	Genus, species and family	
Geographical source	Location	
History	Discovery of crude drug	
Cultivation, collection and preparation for	Time and method of cultivation, irrigation,	
market	climate, fertilizers, collection time, processing	
	etc.	
Morphological description	Color, odor, taste, size, shape, extra features	
Microscopical description	Cell, tissue type and arrangement, cell	
	inclusions, special characters etc	